Features in the Primordial Spectrum from WMAP: A Wavelet Analysis

نویسندگان

  • Arman Shafieloo
  • Tarun Souradeep
  • Prasanta K. Panigrahi
  • Raghavan Rangarajan
چکیده

Precise measurements of the anisotropies in the cosmic microwave background enable us to do an accurate study on the form of the primordial power spectrum for a given set of cosmological parameters. In a previous paper [1], we implemented an improved (error sensitive) Richardson-Lucy deconvolution algorithm on the measured angular power spectrum from the first year of WMAP data to determine the primordial power spectrum assuming a concordance cosmological model. This recovered spectrum has a likelihood far better than a scale invariant, or, ‘best fit’ scale free spectra (∆ lnL ≈ 25 w.r.t. Harrison Zeldovich, and, ∆ lnL ≈ 11 w.r.t. power law with ns = 0.95). In this paper we use Discrete Wavelet Transform (DWT) to decompose the local features of the recovered spectrum individually to study their effect and significance on the recovered angular power spectrum and hence the likelihood. We show that besides the infra-red cut off at the horizon scale, the associated features of the primordial power spectrum around the horizon have a significant effect on improving the likelihood. The strong features are localised at the horizon scale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 9 . 19 44 v 2 [ as tr o - ph ] 1 4 Ju l 2 00 8 Estimation of Primordial Spectrum with post - WMAP 3 year data

In this paper we implement an improved (error sensitive) Richardson-Lucy deconvolution algorithm on the measured angular power spectrum from the WMAP 3 year data to determine the primordial power spectrum assuming different points in the cosmological parameter space for a flat ΛCDM cosmological model. We also present the preliminary results of the cosmological parameter estimation by assuming a...

متن کامل

ارتباط بیماری دیابت و اعتیاد با اثر انگشت

 Background: Human skin more than any other part of the body, is exposed to the risks of diseases and complications of labor. One of the applications of study on the relationship between skin and diseases is use of fingerprints in the diagnosis and the subsequent treatment of it. We analyzed the fingerprint images of two systematic diseases namely diabetes and addiction. Methods: The f...

متن کامل

A 6σ detection of non-Gaussianity in the WMAP 1-year data using directional spherical wavelets

A directional spherical wavelet analysis is performed to examine the Gaussianity of the WMAP 1-year data. Such an analysis is facilitated by the introduction of a fast directional continuous spherical wavelet transform. The directional nature of the analysis allows one to probe orientated structure in the data. Significant deviations from Gaussianity are detected in the skewness and kurtosis of...

متن کامل

A new search for features in the primordial power spectrum

We develop a new approach toward a high resolution non-parametric reconstruction of the primordial power spectrum using WMAP cosmic microwave background temperature anisotropies that we confront with SDSS large-scale structure data in the range k ∼ 0.01 − 0.1 hMpc. We utilise the standard ΛCDM cosmological model but we allow the baryon fraction to vary. In particular, for the concordance baryon...

متن کامل

Non-parametric reconstruction of the primordial power spectrum at horizon scales from WMAP data

We extend to large scales a method proposed in previous work that reconstructs nonparametrically the primordial power spectrum from cosmic microwave background data at high resolution. The improvement is necessary to account for the nongaussianity of the Wilkinson Microwave Anisotropy Probe (WMAP) likelihood due primarily to cosmic variance. We assume the concordance ΛCDM cosmology, utilise a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006